
Ising-like critical phenomena in two-dimensional percolation: numerical evidence

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 3361

(http://iopscience.iop.org/0305-4470/19/16/032)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 17:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 3361-3374. Printed in Great Britain 

Ising-like critical phenomena in two-dimensional percolation: 
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NR4 7UA, UK 
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Abstract. A recent analytic theory of two-dimensional isotropic percolation indicates that 
the singular behaviour near pc is identical to that appropriate for the associated dilute 
k ing  critical point. A speciEc prediction, supported by recent series expansion studies, is 
that the mean number of clusters, K ( p ) ,  presents a singularity of the form K ( p ) -  
lp-pc121nllnlp-pcll, rather than the accepted form K(p)-lp-p,12-" with (Y =-3 .  A 
novel numerical and renormalisation group finite-size scaling analysis of the nature of the 
singularity in K ( p )  is presented in support of the new theory, which implies the absence 
of a separate universality class for two-dimensional percolation processes. This study is 
consistent with the effective values of the exponents a = 0 and U = 1. 

1. Introduction 

In a recent paper (Jug 1986) I have presented a novel series expansion analysis for 
the critical singularity of the mean number of clusters per site, K (  p ) ,  of two-dimensional 
( 2 ~ )  percolation. This analysis provides support for a recent theoretical prediction 
(Jug 1984) according to which the leading singularity in K ( p )  near the percolation 
threshold p c  is of the form 

This form is to be contrasted with the accepted singular behaviour (see, e.g., Essam 1980) 

with a = -f. This 'conventional' value of a follows from the use of the hyperscaling 
relation 2 - a = dv and of the conjectured 'exact' value of the pair connectedness length 
exponent v = (den Nijs 1979). Direct evidence in support of this value of a is provided 
by the series expansion analysis of Domb and Pearce (1976). However, I have shown 
(Jug 1986) that a conventional series analysis which assumes power-law singular 
behaviour can be misguided by the presence of logarithmic corrections and can yield 
fictitious effective exponents. Only when a method of series analysis specifically 
designed to detect logarithmic corrections is used can the true effective value a = 0 be 
extracted from the series expansion for K ( p ) .  

In the present paper, I will present an alternative test of the prediction in equation 
(1.1) by making use of a novel numerical and finite-size scaling analysis of the nature 
of the singularity in K ( p ) .  The general idea of the method is as follows. For an 
infinite system, a divergence at p c  can be seen by taking at least three derivatives of 
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K ( p )  with respect to p .  For a finite linear lattice size L, the quantity K"'(L,p,)  will 
be finite but will diverge as L+ CO in a way directly related to the asymptotic behaviour 
of K"'(co, p )  asp  -pc  + 0. Indeed, if equation (1.2) holds, one would expect a divergence 
of the form 

K'"( L, p , )  - L(lCu)/'  

for L >> 1. Therefore, a numerical evaluation of K"'( L, p, )  for progressively larger lattice 
sizes L should give information on the value of the exponents a and v. The new 
theory of 2~ percolation (which, since it is based on Grassmann path integral techniques 
(Jug 1984), will be termed GPI theory) does not yet give a specific prediction for v and 
the asymptotic behaviour of the connectedness length. However, the general expecta- 
tion is that the remaining singularities of 2~ percolation will have pure Ising exponents 
and superimposed logarithmic corrections. Thus, hyperscaling should hold and one 
should have, in the GPI theory, the effective exponents a = 0 and v = 1. This' means 
that in the case of equation (1.1) one expects K"'(L, p , )  - L for L>> 1, whereas in the 
case of equation (1.2) one should have K"'( L, p , )  - L1'4. Owing to the considerable 
difference in the power-law behaviour, it should be possible to decide upon one or 
other of the competing theories at the cost of a relatively modest amount of computa- 
tional effort. 

The remainder of this paper is organised as follows. In 0 2 the prediction, equation 
( l . l ) ,  of the GPI theory is derived in some detail. In 0 3 the method employed to 
evaluate K"'(L,p,)  numerically is discussed and the results obtained for the bond 
percolation problem on the simple quadratic lattice for 8 == L S 30 are presented in 0 4. 
The renormalisation group ( RG) based finite-size scaling interpretation of these data 
is also developed in 0 4. Section 5 contains a discussion of the results and my 
conclusions. 

2. Grassmann path integral prediction for the singularity of K ( p )  

As is well known (see, e.g., Essam 1980), the geometric properties of percolation can 
be derived from the zero temperature statistical mechanics of the Ising model on the 
diluted lattice associated with the percolation problem. In particular, the mean number 
of clusters per site corresponds to the T = 0 entropy per site, s ( p ,  T ) ,  of the dilute 
Ising model through 

K ( p ) = s ( p ,  O)/(kBln2) 
with kB the Boltzmann constant. Using this relationship and a GPI representation for 
the free energy of the 2~ dilute Ising model, I have been able to show (Jug 1984) that 
the singular part of K ( p )  is given by 

K,( p )  2: lim n-l In D$ exp S [  $1 (2.1) 
n+O J 

where the effective action, in terms of the n + 0 Grassmann fields $", is 

Here, moap-p~o) ,go=(2+&) /8andd= y,d,,with y1 and y2the2x2Paulimatrices. 
It should be pointed out that in equations (2.1) and (2.2) the limit T = 0 is taken before 
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the n + 0 replica limit; however, it can be shown that the same result for the singular 
form of K ( p )  is achieved if the limits are taken in the reverse order. 

In order to extract the form of the singularity in equation (2.1) it is convenient to 
introduce an auxiliary field 4 such that 

K,(p) -- lim n-' In { D+ D 4  exp S [  +, 41 
?I-0 

with 

$"(m,+#)+" -$42+igA'24 a $"+ha). 

One then looks at the behaviour of the equivalent of the specific heat (the sum over 
replicas and n = 0 limit are understood): 

(mo,Ao; k = O )  (2.3) = -n-lr(0,0;2) 

where A. = gA'2 and where r(N9M;L' is the vertex part of the Green function of N + 
fields, M 4 fields and L mass insertions d2x $"+" exp(ikx). Renormalised perturba- 
tion theory and the renormalisation group (Brizin et a1 1976, Amit 1978) are used at 
this point in order to extract the singular behaviour of equation (2.3). The renormalised 
vertex function r(090;2) satisfies the equation 

( K ; + P ( A ) - -  a r(o*o;2)(m, A, K ;  k ) = B ( A )  (2.4) 
a A  

where K- '  is the (arbitrary) renormalisation length scale and B ( A )  a smooth function 
of A only. m E p  -pc and A are the renormalised mass and (dimensionless) coupling 
constant, respectively, and the renormalisation functions P(A) and 8(A) have the small 
coupling expansion 

P(A) =$aA3+O(A4) 

@ ( A )  = bA2+O(A3) 

with a and b n-dependent constants. For n = 0, one has the relationship 

b / a  = -1 (2.6) 
which follows from the renormalised version of the equation of motion 
as[ +, ~ ] / S + ( X )  = 0 and the fact that for n = 0 the field + has zero anomalous dimension. 
The standard solution of equation (2.4) (Brizin et a1 1976) is 

r(o,o;2)(m, A, K ;  0) 

where m ( p )  and A ( p )  are the running mass and coupling constant, given by 

(2.7) 
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and by 

m(p) = m exp( -1' 1 x  dxS(A(x))) 

respectively. The marginal RG fixed point, A * = 0, is approached logarithmically as 
p + 0; equation (2.8), together with equation (2.5), gives the asymptotic behaviour 

A ( p ) = ( - a  lnp)- ' /2+A*=0.  (2.10) 

At the same time, equation (2.9), together with equations (2.5) and (2.10), yields, for 
P + O ,  

m(p) = m(-ln plb'" = m(-ln P ) - ' ' ~  (2.11) 

where use has been made of equation (2.6). Also in the same limit, one has 

The small but otherwise arbitrary scaling parameter p is now fixed, for an infinite 
system, by the condition 

m(p*)(.p*)-' = 1 (2.13) 

that is, by virtue of equation (2.11): 

p* = mK-'llnlmK-'[I-'/* (2.14) 

which vanishes as m ocp  - p c +  0. Therefore, using equations (2.12)-(2.14), equation 
(2.7) yields the asymptotic behaviour 

r(o,o;2)(m, A, K ;  0) =(-In p * ) - 1 r ( o , o ; 2 ) ( K ,  0, K ;  o)+ B ( O )  In(-ln p * )  

= B ( O )  lnllnlm [I{ 1 + O[ (In1 mllnllnlm ll)-']}. (2.15) 

Bearing in mind that B(O)/n is finite for n =0,  equations (2.3) and (2.15) give the 
leading singular behaviour 

K : ( P )  =~nllnlP-Pcll (2.16) 

which in turn implies the result of equation (1.1) for K ( p ) .  Equation (2.16) represents 
an extension to the percolation threshold of an earlier theory proposed for the critical 
behaviour of the 2~ dilute Ising model in the low dilution limit (Dotsenko and Dotsenko 
1983). 

To conclude this section, I will remark that the validity of equation (2.16), and of 
the GPI approach to 2~ percolation in general, depends on the validity of the perturba- 
tion expansion in go and of the corresponding renormalised expansion in g. It is 
always possible that this perturbation theory breaks down precisely in the T = 0, p = p c  
limits of the RG calculation for the dilute Ising model. However, no sign of such a 
breakdown has emerged thus far and no direct way of determining the range of validity 
of such a perturbation theory is yet available. This validity is an assumption common 
to all perturbative RG calculations and it is effectively this assumption that is being 
tested in the present (and previous (Jug 1986)) paper. 
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3. Monte Carlo evaluation of .”‘(I-,, p , )  

As outlined in the introduction, the nature of the singularity in K ( p )  can be analysed 
numerically by looking at d3K(L,p)/dp3 at p = p c  and as a function of the lattice size 
L. Looking at this third derivative has the advantages of generating a divergence as 
p + pc  and L +  CO and of eliminating the analytic background in K (  p ) ,  so that K”’ has 
no regular part that requires subtraction. 

In order to evaluate derivatives of K ( p )  it is most convenient to make use of 
fluctuation formulae, expressing derivatives in terms of cumulants of appropriate 
correlation functions. This is done, in the case of, say, a bond percolation problem, 
by introducing bond occupation variables [ b,] ,  with b, = 0 for an unoccupied bond 1 
and bl = 1 for an occupied bond, and by writing 

I \ - 1  

Here, n,( [ b,]) is the number of clusters per site for a given configuration [ b,] of bonds 
and the associated statistical weight is given by 

( 3 . 2 )  

where g (  p )  = In( p / (  1 - p ) ) .  Direct differentiation of equations ( 3 . 1 )  and ( 3 . 2 )  then gives 

W L ,  P) = g”’(p)((ncN,)-(nc)(NI)) 

+ 3 g ” (  p ) g ’ ( M n c N ? )  - 2(ncN,)(N,) + 2(n,)(NJ2 - ( n c > ( N 3 )  

+6(nc)(N:l(NI) - 3 ( n c ” r : )  - ( n c ) ( N 2 )  ( 3 . 3 )  

+ [ g ’ ( p ) l 3 ( ( n C N : )  - 3(ncN?)(NJ + 6(ncNJ(NJ2 - 6 ( n , ) ( N 1 ) ~  

where NI = Z, b, is the total number of occupied bonds. For a site percolation problem, 
the total number of occupied sites N, = Z, b, would replace NI in equation ( 3 . 3 ) .  For 
the special case in which p c = &  such as the bond percolation problem on the simple 
quadratic lattice considered in this paper, equation ( 3 . 3 )  becomes 

K”’(L, P,) = 3 2 ( ( n , N )  - (n,)(NJ) +64( (ncN?)  - ~ ( ~ , N ~ ) ( ~ I ) + ~ ( ~ , ~ J ) ( N I ) ~  -6(n,)(NJ3 

+ 6 ( n c ) ( ~ f ) ( N , )  - 3(ncN,)(N?) -(n,)“). (3.4) 

Thus, using equation (3.4) it is possible to determine K’,(L, p , )  by generating random 
configurations of bonds with average occupation probability p = p c  on a computer and 
by evaluating n, and NI for each configuration. Owing to the large statistical noise 
associated with the third-order cumulant in equation (3 .4) ,  a considerable number 
( 3 2  x 10’) of independent configurations has to be generated and analysed in order 
to evaluate K’”(L,  p , ) .  The averages over all possible bond configurations required in 
equation (3.4) are approximated by averaging over a sample of up to lo6 configurations. 
The measurement of K”’( L, p , )  is then repeated at least 20 times, so that a statistics 
can be constructed, making sure that the resulting average value and the value obtained 
after averaging over the total number of configurations are indistinguishable. The 
numerical data reported in this paper exploit an algorithm for the evaluation of n, 
which assigns the occupied bonds and searches for the connected clusters by scanning 
the lattice sequentially site by site. This results in a relatively slow counting of the 
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clusters and, consequently, in drastic limitations on the maximum available lattice size 
compatible with reasonable statistics. The maximum size available in this paper is 
L = 30 and this lattice alone required more than 300 h CPU time on a Cray-1 computer. 
It is possible that by making use of parallel processing the counting of clusters may 
be made through a few operations on the whole of the lattice, thus reducing considerably 
the CPU time per configuration and making possible the extension of the present analysis 
to much larger lattices. 

Four sets of data are presented in this paper. They all refer to bond percolation 
clusters on the simple quadratic L x L lattice with periodic boundary conditions. 
Triangles refer to a K ( p )  which includes linked clusters only; circles refer to K ( p )  
for all clusters, including unlinked sites. (0) and ( A )  refer to the true K”’ (L ,p , ) ,  for 
which the statistical noise becomes rapidly uncontrollable with increasing L. (0) and 
(A) refer to a modified counting algorithm which was found to be considerably less 
noisy. In the modified algorithm, whenever clusters n and n-1 merge into a single 
cluster in the sequential filling of the lattice bonds, cluster n - 2  is neglected in the 
counting. It will be assumed that the neglected clusters are not spanning clusters and 
that therefore the modified k ( p )  has the same singular behaviour as the original K ( p ) ,  
i.e. k’”( L, p c )  cc K”’( L, pJ. This is strikingly confirmed by the fact that all sets of data 
settle down to the same asymptotic behaviour for L>> 1, as shown in figures 1, 2 and 3. 
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Figure 2. Plot of K " ' ( L , p , )  against L(ln L)-''2 to verify agreement with the full GPI 
prediction, equation (4.14). The pattern of convergence is identical to that of figure 1 .  

In figure 4 I present the histogram relative to my evaluation of K"'( L, p c )  for L = 16 
(all clusters counted), with the continuous curve representing the probability distribu- 
tion function as determined from maximum entropy methods (Collins and Wragg 
1977). The resulting distribution is Gaussian and fits the histogram well, with mean 
and standard error as reported for the corresponding data point in figures 1 and 2. 
The statistics relative to any of the remaining data points is of comparable quality. 

4. Finite-size scaling interpretation 

One assumes, to start with, that the critical behaviour near p E  is determined by an 
ordinary RG fixed point, as is commonly believed. Then, with a = -f, the first divergent 
derivative of K (  p )  is 

K ' " ( p )  2 Ip (4.1) 
with K"' a multiplicatively renormalisable quantity in any of the available field-theoretic 
formulations of percolation. The RG-based finite-size scaling theory (BrBzin 1982) 
allows one to write, for a system of size L>> 1, 

K"' (L ,p )  = K " ' ( W , p ) F ( L / ( )  = K'"(W, p ) f ( ( p - p , ) L ' / " )  (4.2) 
with F and f universal functions and 6 the connectedness length of the infinite system. 
Then, equations (4.1) and (4.2) imply the asymptotic behaviour 

(4.3) K'f'(L, p c )  = AL(l+a)/" = ~ ~ 1 / 4  
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Figure 3. Same as in figure 2, but for the modified k(L, p ) .  
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Figure 4. Histogram and continuous probability distribution function P ( X )  for X = 
K"'( L = 16, p J .  P ( X )  is normalised to the total number of independent evaluations, N = 73, 
and each evaluation corresponds to averages over 310 OOO configurations. 
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where A is a non-universal constant and where the conventional values of the exponents 
CY and Y have been used. 

If, on the other hand, 2~ percolation is dominated by a marginal RG fixed point, 
as in the GPI theory, one expects (BrCzin 1982, BrCzin and Zinn-Justin 1985) a 
breakdown of the ordinary finite-size scaling prediction, equations (4.2) and (4.3), 
though only through the appearance of logarithmic corrections in the L dependence. 
The specific predictions of the finite-size GPI theory for K“’( L, p) will now be derived 
for the first time. It is clear that, in the spirit of the Grassmann field theory of § 2, 
K”’ corresponds to the vertex function 

K”’(L, p )  = n-1T(0p0;3)(L, M O ,  A o ;  ki = 0). (4.4) 

This function is multiplicatively renormalisable and satisfies the RG equation 

(4.5) 
( K ~ + P ( A ) - -  a 

r(0’0;3)(L, m, A, K ;  k i )  = O  
ah 

by virtue of the fact that no new renormalisation is associated with the length L of 
the periodic finite-size lattice (BrCzin 1982). The solution of equation (4.5) has the form 

m, A, K ;  ki) r(O,O;3)( L, 

= p-’ exp( -11 ~ 3 t ? ( h ( ~ ) ) ) r ‘ ~ . ~ ’ ~ ’ ( L ,  m ( p ) p - ’ ,  A ( p ) ,  K ;  k ip -1 )  

or, using dimensional analysis, 

111, A, K ;  ki) r(0,0;3 I (  L, 

=ex( -1’ I X  dx3t?(A(x)))r‘o~o’3’(L, m ( p ) ,  A ( p ) ,  K P ;  k i )  

where for small p one has, using the results of § 2, 

(4.6) 

(4.7) 

(4.8) 

For an infinite system, p is fixed as in equation (2.13); then, using equation (2.14), 
equations (4.6) and (4.8) yield 

r(0,0;3) (m, m, A, K ;  0) = p*-’(-ln p*)-312r(090;3)(~, K ,  0, K ;  0) 

= Cm-l(lnlmK-’l)-’. 

By virtue of equation (4.4) and the fact that C is a constant of O ( n ) ,  this implies 

K”’(a ,  P )  = IP -Pcl-l(lnlP-Pcl)-l (4.9) 
which is consistent with equations (1.1) and (2.16); equation (4.9) is the GPI alternative 
to equation (4.1). On the other hand, for a finite-size system one may consider the 
dimensionless ratio 

a( L, m, A, K )  = ( L ,  m, A, K ;  O ) / ~ ( ~ , ~ ; ~ ) ( C O ,  m, A, K ;  0) 

= K”’( L, p)/K‘”(cO, p )  (4.10) 
which, according to equation (4.7), is an invariant of the RG: 

WL, m, A, K )  =WL, m ( p ) ,  ~ ( p ) ,  K P )  =&(LKP,  m ( p ) / ( K p ) ,  ~ ( p ) )  (4.1 1 )  
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where, in the last equality, has been written as a function of dimensionless variables. 
The parameter p is fixed according to p* = (LK)-', which implies, from equation (2.11), 

m ( p * )  = m [ l n ( ~ ~ ) ] - ' / * .  (4.12) 

It then follows from equations (4.10)-(4.12) that, for L>> 1,  

(4.13) 

which shows the breakdown of simple finite-size scaling and is the GPI version of 
equation (4.2). Using equations (4.9) and (4.13), one arrives at the following GPI 
prediction for the asymptotic behaviour of K"'(L,  p , )  

K"'( L, p , )  = AL(1n L)-' /*  (4.14) 

which, compared with equation (4.3), shows that in the W I  theory a = 0 and v = 1 are 
the effective 'thermal' exponents of 2~ percolation. This implies that the hyperscaling 
relation 2 - a = dv is verified also in the GPI approach when the effective values of the 
exponents are used. 

Given the considerable difference between the competing predictions, equations 
(4.3) and (4.14), for the asymptotic behaviour of K"'(L,p,) ,  it should be possible to 
test the GPI theory against the conventional one by using the available numerical data. 
In figure 1, the double logarithmic plot of K"'(L, p , )  against lattice size L shows, on 

114 

Figure 5. Plot of K"'(L, p , )  against 15''~ to test the prediction of the conventional theory, 
equation (4.3). No straight line passing through the origin can be fitted to the available data. 
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all sets of data, convergence towards an asymptotic behaviour with effective power-law 
exponent (1  + a)/ v = 1, consistent with the GPI prediction, equa_tion (4.14). In figures 
2 and 3, the numerical data for K”’( L, p , )  and for the modified K‘”( L, p , ) ,  respectively, 
are plotted against L(ln L)-’ /*  and it can be seen that the same pattern of convergence 
as in figure 1 towards the full GPI prediction, equation (4.14), is recovered. The available 
data, plotted against L1l4, do not agree with the prediction of the conventional theory, 
equation (4.3) (see figure 5), although in principle convergence towards this behaviour 
for much larger values of L cannot be excluded. 

It should be noticed at this point that the possible interference in the finite-size 
analysis of the available data from corrections to the leading scaling behaviour, equation 
(4.3) or equation (4.14), has not been considered here. This is partly justified by the 
insufficient quality of the statistics for the present data and by the fact that the present 
numerical study seeks agreement with one or other of the competing predictions rather 
than a precise evaluation of a critical exponent. More to the point, in the case of 
equation (4.14) corrections to scaling terms will be logarithmic in L and are expected 
to be irrelevant to the analysis. 

5. Discussion and conclusions 

The available numerical data for K“’( L, p , )  refer to lattices of relatively small size. 
However, convergence towards the asymptotic behaviour predicted by the GPI theory 
of 2~ percolation is observed quite clearly and this provides alternative evidence that 
the theory is consistent. It could be argued that recent numerical studies of 2~ 

percolation (Reynolds er a1 1978, Eschbach et a1 1981, Blote et a1 1981, Derrida and 
de Seze 1982) have shown that lattices of much larger size than the ones used here 
must be employed in order to approach the critical behaviour predicted by the 
conventional theory. However, it is possible that for a free energy property like K”’ 
the convergence to the expected exponents is much faster as a function of increasing 
L than it is for other percolation properties. Also, the slow convergence observed in 
these studies (see, e.g., Eschbach et a1 1981) as a function of increasing lattice or 
cluster size could be taken as warning of the presence of a marginal RG fixed point 
(Luck 1984, BrCzin and Zinn-Justin 1985). The present study, along with the observation 
of a marginal operator in a real space RG analysis of the 2~ one-state Potts model 
(Andelman and Berker 1981), suggests that this may just be the case for 2~ percolation. 
It is not impossible that, as in the case of the series expansion analysis (Jug 1986), 
insisting on an assumed power-law behaviour and an ordinary RG fixed point in the 
generation and analysis of the numerical data may result in a slow convergence towards 
a set of apparent critical exponents. This is known to be the case for the 2~ four-state 
Potts model (Barber 1983), where the presence of logarithmic corrections generates 
fictitious values for the exponents as extracted by conventional numerical methods. 

In order to illustrate this possibility one may consider the following. Most of the 
numerical methods aiming at the determination of the exponent v exploit the fact that, 
according to finite-size scaling theory (Fisher 1971), the apparent percolation threshold 
p, in a lattice of size L approaches the true p c  according to the asymptotic law 

Ap, = p c  - pc = BL-I/”. (5.1) 
A similar asymptotic behaviour is expected for the L dependence of the finite-size 
rounding of the transition, Sp. If a scaling form such as equation (4.2) or (4.13) is 
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1 2 

(a1 

\. \. to-’ - 
WL i 

\. \. 

predicted, then the rounding region should correspond to the condition x - 1 for the 
argument of the universal functionf(x). Indeed, in the case of the conventional theory, 
equation (4.2) yields the prediction in equation (5 .1)  for either Apc or Sp. Alternatively, 
equation (4.13) leads to the asymptotic behaviour 

Sp = Ap, = BL-’(ln L)’” (5.2) 

for L>> 1 .  It can be shown that this behaviour agrees with the numerical study by 
Levinshtein et a1 (1976) of site percolation on finite-size square lattices. This study 
does not employ any real space RG rescaling and is conducted in the same spirit as in 
the present work. The authors accurately determine the dispersion W, ( Cc Apc for large 
L )  of percolation thresholds for lattice sizes 1 s L S  128 and find excellent agreement 
with a finite-size dependence given by WL = B(L+ C)-l lv,  with B and C adjustable 
parameters and v = 1.33. On the other hand, it is shown in figures 6(a) and ( b )  that 
an equally good fit is obtained by using 

W, = BL-’[ln( CL+ I)]’” (5.3) 

with B = 1.18 and C = 0.075. Although much in this argument is heuristic, it indicates 
that the asymptotic behaviour predicted by the GPI approach, equation (5.2), could be 
confused with a power law and an exponent v # 1 .  In a future planned paper, a 
finite-size GPI calculation of Ap, will be undertaken. It would be interesting to fit the 
resulting detailed prediction to numerical data for WL obtained as in Levinshtein et 

10-2 

1976), but for larger lattice sizes. 

, , , , , , , , , , , , , , 

K) 

Figure 6. (a )  Double logarithmic plot of W, against L; the curve is a plot of equation 
(5.3) with B = 1.18 and C = 0.075. ( b )  Plot of I /  W, against L[ln(CL+ I)]-”*; the straight 
line has slope 1/B, with B and C as in ((I). Numerical data are taken from Levinshtein 
et a/ (1976). 

Together with the independent confirmation obtained from the series expansion 
analysis of the singularity in K ( p )  as given by equation ( 1 .  l ) ,  the present work indicates 
quite clearly that the critical properties of 2~ percolation may be dominated by a 
marginal Ising-like RG fixed point. The numerical and finite-size scaling study of 2~ 

percolation presented in this study is the first of its kind and is consequently somewhat 
preliminary in nature. In order to rule out the conventional behaviour, equation (4.3), 
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confidently, data on K"'( L, p )  for much larger lattice sizes are required and these can 
be obtained only through the use of a new advanced counting algorithm, adapted for 
use on an array processor or special purpose computer. More to the point, the 
predictions of the GPI theory need to be extended to other properties of 2~ percolation, 
e.g. the percolation probability P( p )  and the pair connectedness function C (  r, p ) .  
Various quantities related to these properties lend themselves more easily to analysis 
through numerical and series expansion methods. Knowledge of the GPI asymptotic 
behaviour of these properties may lead to a different interpretation of this type of 
data. Unfortunately, theoretical methods for the analysis of the asymptotic behaviour 
of P( p )  and C (  r, p )  seem to be unavailable at present. This is due to the fact that in 
the Grassmann field theory of any Ising model the spin pair correlation function, to 
which P( p )  and C ( r ,  p )  are ultimately connected, does not correspond to the pair 
correlation function ( $ ( r ) $ ( O ) )  of the Grassmann fields $(x), as it would do in any 
ordinary field theory. Rather, the asymptotic behaviour of the expectation value of a 
complicated composite operator, e.g. 

needs to be extracted for r - 0 0  and m + 0 .  To date, this has not been achieved 
satisfactorily and uncontroversially, even in the case of the pure 2~ Ising model. Thus, 
progress in the understanding of 2~ percolation and many other lattice models may 
be directly dependent on progress in the GPI formalism for Ising problems. 

It is important to remark, in conclusion, that 2~ Ising critical exponents have been 
occasionally observed for 2~ percolation in the past, both theoretically (Thorpe and 
Kirkpatrick 1979) and numerically (Roussenq er a1 1976). Moreover, Fucito and Parisi 
(1981) have found evidence for the breakdown of the momentum space RG approach 
to percolation, which otherwise yields the conventional description, specifically in 
d = 2. These findings strengthen the point of view developed in the present study. 
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Note added in proof: H Kesten (1986 Phys. Reo. Lett. 56 1210) has pointed out that the form, equation ( l . l ) ,  
proposed for the singularity in K ( p )  is in (marginal) disagreement with his rigorous result on the Holder 
continuity of this function, namely there exists an a > 0 and a C > 0 such that, for all p , ,  p 2  E [0, 11, 

IK"(pi)- K"(P,)I CIP~  - ~ z l ' l .  
Unless the agreement between the GPI theory and the numerical results for K (  p )  is a mere coincidence, one 
may wonder whether the possibility of an a = 0 and of a logarithm on the right-hand side of the above 
inequality has been totally overlooked. It is intriguing that the conditions of a > 0 and a < O  should go 
hand in hand in Kesten's arguments. 
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